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Inverse kinematics computation
in computer graphics and
robotics using conformal
geometric algebra

Dietmar Hildenbrand, Julio Zamora and
Eduardo Bayro-Corrochano

ABSTRACT We focus on inverse kinematics applications in computer graph-
ics and robotics based on Conformal Geometric Algebra. Here, geometric
objects like spheres and circles that are often needed in inverse kinematics algo-
rithms are simply represented by algebraic objects.
We present algorithms for the inverse kinematics of a human arm like kinematic
chain and for the grasping of robots and virtual humans. The main benefits of
using geometric algebra in the virtual reality software Avalon are the easy, com-
pact and geometrically intuitive formulation of the algorithms and the immediate
computation of quaternions.

Keywords: Clifford algebras, Inverse Kinematics.

1 Introduction

After a short introduction of Conformal Geometric Algebra we present an
algorithm for the inverse kinematics of a virtual human with the focus on
the immediate computation of quaternions.

We also show how to perform certain basic robot object manipulation
tasks like solving the problem of positioning the gripper in a certain position
of space disregarding the grasping plane or the gripper’s alignment. Then,
we will illustrate how the robotic arm can follow linear and spherical paths.

After a brief introduction of two software packages for the development
and the implementation of algorithms based on Geometric Algebra we
present a grasping algorithm based on CLUCalc that you are able to down-
load and to make your own experiments.

AMS Subject Classification: 15A66, 17B37, 20C30, 81R25.
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2 Conformal Geometric Algebra

We use the 5D Conformal Geometric Algebra which is an extension of
the 4D Projective Geometric Algebra.
While points and vectors are normally used as basic geometric entities, in
Conformal Geometric Algebra we have a wider variety of basic objects. For

FIGURE 1. Intersection of two spheres

example, spheres and circles are simply represented by algebraic objects.
To represent a circle you only have to intersect two spheres, which can be
done with a basic algebraic operation. Alternatively you can simply com-
bine three points to obtain the circle through these three points.

Some more detailed introductions to the Conformal Geometric Algebra
will be found in [8, 2] and [12], some Geometric Algebra tutorials will be
found in [3], [4], [9], [11] [14], [16] and some applications in [5], [6] and [17].

Besides the construction of algebraic entities, kinematics can also be
expressed in Geometric Algebra. We present algorithms for the inverse
kinematics of a virtual human and for the grasping of a robot as well as
the software tools to develop and implement the applications.

3 The basic geometric entities in Conformal
Geometric Algebra

Table 1.1 lists the two representations of the geometric entities in Confor-
mal Geometric Algebra. Please find details in [9] and [13].

In this table x and n are marked bold to indicate that they represent
3D entities as linear combination of the 3D base vectors e1, e2 and e3 .

x = x1e1 + x2e2 + x3e3 (3.1)

The additional two base vectors are indicated by

• e0 representing the 3D origin

• e∞ representing the point at infinity
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TABLE 1.1. list of the conformal geometric entities

entity representation 1 representation 2
Point P = x + 1

2x
2e∞ + e0

Sphere s = P − 1
2r2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Plane π = n + de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞
Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Line l = π1 ∧ π2 l∗ = x1 ∧ x2 ∧ e∞
Point Pair Pp = s1 ∧ s2 ∧ s3 Pp∗ = x1 ∧ x2

The {si} represent different spheres and the {πi} different planes.
The two representations are dual to each other. In order to switch be-

tween the two representations you can use the dual operator which is indi-
cated by ’*’. Depending on the application and convenience, one of these
two sets of representations is selected as standard representation. We use
representation 1 as standard representation and representation 2 as dual
representation.
In representation 2 the outer product ’∧ ’ indicates the construction of ge-
ometric objects with the help of points xi that lie on it. E. g. a sphere is
defined by 4 points (x1 ∧ x2 ∧ x3 ∧ x4 ) determining the sphere.
In representation 1 the dual meaning of the outer product is the intersec-
tion of geometric entities. E. g. a circle is defined by the intersection of two
spheres ( s1 ∧ s2 ). Please refer to figure 1.

4 The Inverse Kinematics of a human-arm-like
kinematic chain

Our model of the human arm is a 7 degrees of freedom (DOF) kinematic
chain according to [18] with 3 degrees of freedom ( θ1, θ2, θ3 ) at the shoul-
der, 1 degree of freedom at the elbow ( θ4 ) and 3 degrees of freedom at
the wrist ( θ5, θ6, θ7 ).
While in former analytic algorithms a lot of mathematical knowledge about
trigonometry, rotation matrices etc. has to be available, in our approach
only some basic operations with basic geometric entities like planes and
spheres are needed.

4.1 Computing the joint angles

Our goal is to reach the chosen point pt with the wrist.
The geometrically intuitive algorithm can be separated in the following
steps

• compute the swivel plane
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• compute the elbow point pe

• compute the elbow angle θ4

• elevate to the rotation plane including the elbow point pe and com-
pute the angle θ1

• rotate until the elbow position matches and compute the angle θ2

• rotate until the wrist location is reached and compute the angle θ3

that are described in detail in [10].

FIGURE 2. Model of the arm of a virtual human with 3 DOF of freedom at the
shoulder (origin of the coordinate system), 1 DOF at the elbow and 3 DOF at
the wrist

4.2 Computing the quaternions

Until now, we computed all the relevant angles needed to describe the
transformation of the human-arm-like kinematic chain in order to reach its
goal. But, the virtual reality software Avalon needs quaternions in order to
perform the SLERP motion between two gestures.
In order to handle quaternions we reduce the dimensionality and map to
the Euclidean geometric (sub)algebra based on e1 , e2 and e3 .

We identify the imaginary components i, j and k , representing a dual
coordinate system, with bivectors. Please refer to [16] for details about
quaternions in Euclidean geometric algebra.

In our application we have to compute the quaternions qshoulder and
qelbow based on the angles θ1, θ2, θ3 and θ4 and the relevant coordinate
axes.
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For instance, the elbow quaternion can be computed based on the angle
θ4 according to the following equation

qelbow = cos(
θ4

2
)− isin(

θ4

2
) (4.1)

The shoulder quaternion can be expressed as the geometric product of
the 3 quaternions based on the angles θ1, θ2, θ3

qshoulder = q1q2q3 (4.2)

5 Following Geometric Primitives

In this section we will show how to perform certain basic object manipula-
tion tasks now in the context of conformal geometric algebra. First, we will
solve the problem of positioning the gripper of the arm in a certain position
of space disregarding the grasping plane or the gripper’s alignment. Then,
we will illustrate how the robotic arm can follow linear and spherical paths.

5.1 Touching a point

In order to reconstruct the point of interest, we back-project two rays
extending from two views of a given scene (see Figure 3). These rays will not
intersect in general, due to noise. Hence, we compute the directed distance
between these lines and use the the middle point as target. Once the 3D
point pt is computed with respect to the cameras’ framework, we transform
it to the arm’s coordinate system.

FIGURE 3. Point of interest in both cameras ( pt ).

Once we have a target point with respect to the arm’s framework, there
are three cases to consider. There might be several solutions (see Figs. 4.a
and 5.a), a single solution (see Figure 4.b), or the point may be impossible
to reach (Figure 5.b).
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In order to distinguish between these cases, we create a sphere St =
pt − 1

2d2
3e∞ centered at the point pt and intersect it with the bounding

sphere Se = p0 − 1
2 (d1 + d2)2e∞ of the other joints (see Figures 4.a and

4.b), producing the circle zs = Se ∧ St .

FIGURE 4. a) Se and St meet (infinite solutions) b) Se and St are tangent
(single solution).

If the spheres St and Se intersect, then we have a solution circle zs

which represents all the possible positions the point p2 (see Figure 4) may
have in order to reach the target. If the spheres are tangent, then there is
only one point of intersection and a single solution to the problem as shown
in Figure 4.b.

FIGURE 5. a) St inside Se produces infinite solutions, b) St outside Se , no
possible solution.

If the spheres do not intersect, then there are two possibilities. The first
case is that St is outside the sphere Se . In this case, there is no solution
since the arm cannot reach the point pt as shown in Figure 5.b. On the
other hand, if the sphere St is inside Se , then we have a sphere of solutions.
In other words, we can place the point p2 anywhere inside St as shown
in Figure 5.a. For this case, we arbitrarily choose the upper point of the
sphere St .
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In the experiment shown in Figure 6.a, the sphere St is placed inside the
bounding sphere Se , therefore the point selected by the algorithm is the
upper limit of the sphere as shown in Figures 6.a and 6.b. The last joint is
completely vertical.

FIGURE 6. a) Simulation of the robotic arm touching a point. b) Robot “Ge-
ometer” touching a point with its arm.

5.2 Line of intersection of two planes

In the industry, mainly in the sector dedicated to car assembly, it is often
required to weld pieces. However, due to several factors, these pieces are
not always in the same position complicating this task and making this
process almost impossible to automate. In many cases the requirement is
to weld pieces of straight lines when no points on the line are available.
This is the problem to solve in the following experiment.

If we do not have points on the line of interest, then we find this line via
the intersection of two planes (the welding planes). In order to determine
each plane, we need three points. The 3D coordinates of the points are
triangulated using the stereo vision system of the robot yielding a config-
uration like the one shown in Figure 7.

Once the 3D coordinates of the points in space have been computed, we
can find each plane with π∗ = x1∧x2∧x3∧e∞ , and π′∗ = x′1∧x′2∧x′3∧e′∞ .
The line of intersection is computed via the meet operator l = π′ ∩ π . In
Figure 8.a we show a simulation of the arm following the line produced by
the intersection of these two planes.

Once the line of intersection l is computed, it suffices with translating
it on the plane ψ = l∗ ∧ e2 (see Figure 8.b) using the translator T1 =
1 + γe2e∞ , in the direction of e2 (the y axis) a distance γ . Furthermore,
we build the translator T2 = 1+d3e2e∞ with the same direction ( e2 ), but
with a separation d3 which corresponds to the size of the gripper. Once the
translators have been computed, we find the lines l′ and l′′ by translating
the line l with l′ = T1lT

−1
1 , and l′′ = T2l

′T−1
2 .

The next step after computing the lines, is to find the points pt and p2
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FIGURE 7. Images acquired by the binocular system of the robot “Geometer”
showing the points on each plane.

FIGURE 8. a) Simulation of the arm following the path of a line produced by
the intersection of two planes. b) Guiding lines for the robotic arm produced by
the intersection (meet) of planes and vertical translation.

which represent the places where the arm will start and finish its motion,
respectively. These points were given manually, but they may be computed
with the intersection of the lines l′ and l′′ with a plane that defines the de-
sired depth. In order to make the motion over the line, we build a translator
TL = 1−∆Lle∞ with the same direction as l as shown in Figure 8.b. Then,
this translator is applied to the points p2 = TLp2T

−1
L and pt = TLptT

−1
L

in an iterative fashion to yield a displacement ∆L on the robotic arm.
By placing the end point over the lines and p2 over the translated line,

and by following the path with a translator in the direction of l we get a
motion over l as seen in the image sequence of Figure 9.



Inverse kinematics computation 9

FIGURE 9. Image sequence of a linear-path motion.

5.3 Following a spherical path

This experiment consists in following the path of a spherical object at a
certain fixed distance from it. For this experiment, only four points on the
object are available (see Figure 10.a).

FIGURE 10. a) Points over the sphere as seen by the robot “Geometer”. b)
Guiding spheres for the arm’s motion.

After acquiring the four 3D points, we compute the sphere S∗ = x1 ∧
x2 ∧ x3 ∧ x4 . In order to place the point p2 in such a way that the arm
points towards the sphere, the sphere was expanded using two different
dilators. This produces a sphere that contains S∗ and ensures that a fixed
distance between the arm and S∗ is preserved, as shown in Figure 10.b.

The dilators are computed as follows

Dγ = e−
1
2 ln( γ+ρ

ρ )E , (5.1)

Dd = e−
1
2 ln(

d3+γ+ρ
ρ )E . (5.2)

The spheres S1 and S2 are computed by dilating St :

S1 = DγStD
−1
γ , (5.3)

S2 = DdStD
−1
d . (5.4)

We decompose each sphere in its parametric form as
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pt = M1(ϕ)M1(φ)ps1M
−1
1 (φ)M−1

1 (ϕ), (5.5)
p2 = M2(ϕ)M2(φ)ps2M

−1
2 (φ)M−1

2 (ϕ). (5.6)

Where ps is any point on the sphere. In order to simplify the problem, we
select the upper point on the sphere. To perform the motion on the sphere,
we vary the parameters ϕ and φ and compute the corresponding pt and
p2 using equations (5.5) and (5.6). The results of the simulation are shown
in Figure 11.a, whereas the results of the real experiment can be seen in
Figures 11.b and 11.c.

FIGURE 11. a) Simulation of the motion over a sphere. b) and c) Two of the
images in the sequence of the real experiment.

6 Software support

Here we briefly describe two software tools that are convenient to develop
and implement algorithms based on Conformal Geometric Algebra.

6.1 Visual development of algorithms

The OpenSource CLUCalc software can be used advantageously to cal-
culate with Geometric Algebra and to visualize the results of these
calculations. CLUCalc is freely available for download at [15]. With the
help of the CLUCalc Software you are able to edit and run Scripts called
CLUScripts. A screenshot of CLUCalc can be seen in figure 12.

CLUCalc provides the following three windows

• script editor window

• visualization window

• output window

There is almost a one to one correspondence between formulae and code.
For example the computations of the intersection of two spheres can easily
be done as follows
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FIGURE 12. Screenshot of the CLUCalc windows

S1 = p0 - 0.5*d2*d2*einf;
S2 = p2 - 0.5*d3*d3*einf;
Circle = S1^S2;

For details regarding CLUScript please refer to the CLUCalc online help
[15].

The grasping algorithm, described in the next section, has been imple-
mented using CLUCalc.

6.2 Implementation of the algorithms

With the use of the Gaigen toolkit it is possible to implement algorithms
and integrate them inside of a desired target platform. Gaigen is a code
generator for geometric algebras. Its focus is to optimize the resulting C++
code as much as possible for applications. Details can be found in [7].

7 Virtual grasping of an object

FIGURE 13. grasping an object
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The following grasping algorithm of a computer graphics application is
based on the robotics algorithm of the paper [10].
It can be downloaded as a CLUScript ( Grasping.clu is the main file ) from
the homepage

http://www.gris.informatik.tu-darmstadt.de/~dhilden/

The goal of our grasping algorithm is to

• compute the grasping plane πt

• compute the point of contact pt

in order to be able to compute the inverse kinematics of a virtual human
or a robot.

7.1 Extract points

For our grasping algorithm, first of all, we need 4 points, identifying the
object to be grasped. We assume in our computer graphics application that
these 4 points are already stored in the data structure of the object.

Recall that the following steps are performed by the robot ”Geometer”
to extract these 4 points

• Take a calibrated stereo pair of images of the object

• Extract four non-coplanar points from these images

• Compute the corresponding 3D points xi , i = 1, .., 4 using triangu-
lation

FIGURE 14. The 4 points, identifying the object to be grasped
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7.2 Assign points

First of all, we need 4 points, identifying the object to be grasped. In the
real application they are taken from a calibrated stereo pair of images of the
object. In order to assign the four points we at first compute the distances
between all the 4 points and the plane spanned by the 3 other points.
The point with the greatest distance da will be called apex point xa (see
CLUCalc visualization in FIGURE 14). The other 3 points are called base
points xb1 , xb2 , xb3 .

7.3 Compute grasping plane πt

To compute the grasping plane πt we compute the circle

z∗b = xb1 ∧ xb2 ∧ xb3 (7.1)

based on the base points.

FIGURE 15. The grasping plane πt including the grasping circle zt

Then, we translate the circle zb in the direction and magnitude of da

2
to produce the grasping plane πt with the following steps :

With the help of the translator

T = 1 +
1
4
dae∞ (7.2)

we compute the grasping circle

zt = TzbT̃ (7.3)

and the grasping plane

π∗t = z∗t ∧ e∞ (7.4)
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7.4 Compute the point of contact pt

We already know the orientation for our grasping process, but we still need
the point of contact pt . Therefore we compute the closest point of the
grasping circle to the y-axis with the help of the following steps :

The y-axis can be expressed as the intersection of the two planes with
the normal vectors e1 and e3

Ly = e1 ∧ e3 (7.5)

The center of the grasping circle zt can be computed based on the following
sandwich product

ca = zte∞zt (7.6)

Then, we compute the plane through Ly and ca

πy = (L∗y ∧ ca)∗ (7.7)

and intersect with the grasping circle

Ppt = πy ∧ ct (7.8)

and select the point closer to the y-axis of the resulting point pair

FIGURE 16. Moving the gripper circle zh towards the grasping circle zt

7.5 Move gripper to the target

In order to be able to move the gripper to the target we have to compute the
transformation (rotation R and translation T ) between the gripper circle
and the grasping circle. Then we are able to move the gripper circle zh step
by step ( z′h ) towards the grasping circle zt (see CLUCalc visualization in
FIGURE 16).

z′h = TRzhR̃T̃ . (7.9)
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8 Conclusion

Here, we solved our application problems using Conformal Geometric Al-
gebra. We transferred our 3D problem with the help of geometric intuition
into the Conformal Geometric Algebra, performed the geometric comput-
ing in 5D and got our results back into the real 3D world.

Geometric Algebra is applicable in many different engineering scenarios
and provides a straightforward and intuitive problem solving approach.
This is why this kind of algorithms is easier to understand, easier to develop
and to maintain compared to algorithms not using Geometric Algebra.
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